Run predator-prey model
run_predprey_model.Rd
Run predator-prey model
Arguments
- time
vector of time units over which to run model, starting from 0.
time
can also be supplied as just the total length of the simulation (i.e. tmax)- init
vector of initial population sizes for both species, with names H and P
- params
vector of parameters. If the param vector has entries of c(r, a, e, d), the function runs the classic Lotka-Volterra model (type 1 functional response of predator; exponential growth for prey). If the parameter vector has entries c(r, a, e, d, K), supplied, then the function runs the Lotka-Volterra model with logistic growth in the prey. If the parameter vector has entries c(r, a, e, d, T_h), the function runs the Lotka-Volterra model with a Type II function response in the predator. Finally, if the parameter vector has entries c(r, a, e, d, K, T_h), the function runs the Lotka-Volterra model with logistic growth in the prey and Type II functional response for the predator (this is sometimes called the Rosenzweig-Macarthur model).
See also
plot_predprey_time()
for plots of the population dynamics over
time, and plot_predprey_portrait()
for making portrait plots of the
predator and prey (including visualizations of the ZNGIs)
Examples
# Lotka-Volterra predator-prey model
params_lv <- c(r = .1, a = .01, e = .01, d = .001)
head(run_predprey_model(5, init = c(H = 10, P = 5), params = params_lv))
#> time H P
#> [1,] 0.0 10.00000 5.000000
#> [2,] 0.1 10.05013 5.000001
#> [3,] 0.2 10.10050 5.000005
#> [4,] 0.3 10.15113 5.000011
#> [5,] 0.4 10.20201 5.000020
#> [6,] 0.5 10.25315 5.000032
# Lotka-Volterra model with logistic growth of prey
params_lv_logprey <- c(r = .1, a = .01, e = .01, d = .001, K = 1000)
head(run_predprey_model(5, init = c(H = 10, P = 5), params = params_lv_logprey))
#> time H P
#> [1,] 0.0 10.00000 5.000000
#> [2,] 0.1 10.04912 5.000001
#> [3,] 0.2 10.09847 5.000005
#> [4,] 0.3 10.14806 5.000011
#> [5,] 0.4 10.19789 5.000020
#> [6,] 0.5 10.24796 5.000031
# Lotka-Volterra model with Type 2 functional response
params_lvt2 <- c(r = .1, a = .01, e = .01, d = .001, T_h = .1)
head(run_predprey_model(5, init = c(H = 10, P = 5), params = params_lvt2))
#> time H P
#> [1,] 0.0 10.00000 5.000000
#> [2,] 0.1 10.05062 4.999996
#> [3,] 0.2 10.10151 4.999995
#> [4,] 0.3 10.15265 4.999996
#> [5,] 0.4 10.20405 5.000000
#> [6,] 0.5 10.25572 5.000006
# Rosenzweig-Macarthur model (logistic prey and Type 2 FR predator)
params_rm <- c(r = .1, a = .01, e = .01, d = .001, K = 1000, T_h = .1)
head(run_predprey_model(5, init = c(H = 10, P = 5), params = params_rm))
#> time H P
#> [1,] 0.0 10.00000 5.000000
#> [2,] 0.1 10.04962 4.999996
#> [3,] 0.2 10.09948 4.999995
#> [4,] 0.3 10.14958 4.999996
#> [5,] 0.4 10.19993 5.000000
#> [6,] 0.5 10.25053 5.000006