Run logistic growth model
run_logistic_model.Rd
Run logistic growth model
Arguments
- time
vector of time units over which to run model, starting from 0.
time
can also be supplied as just the total length of the simulation (i.e. tmax)- init
initial population size of population, in a vector with name
N1
- params
vector of intrinsic growth rate, carrying capacity and, if simulating a lagged-logistic model,
tau
in a vector with namesr
,K
, andtau
(if applicable)
See also
run_exponential_model()
for simulating the dynamics of a
population with no carrying capacity, and run_discrete_logistic_model()
,
run_beverton_holt_model()
, and run_ricker_model()
for discrete-time
models of population growth with population regulation
Examples
run_logistic_model(time = 0:10, init = c(N1 = 1), params = c(r = .15, K = 1000))
#> time N1
#> 1 0 1.000000
#> 2 1 1.161646
#> 3 2 1.349388
#> 4 3 1.567423
#> 5 4 1.820624
#> 6 5 2.114641
#> 7 6 2.456023
#> 8 7 2.852358
#> 9 8 3.312437
#> 10 9 3.846442
#> 11 10 4.466148
run_logistic_model(time = 10, init = c(N1 = 1), params = c(r = .15, K = 1000))
#> time N1
#> 1 0.0 1.000000
#> 2 0.1 1.015098
#> 3 0.2 1.030424
#> 4 0.3 1.045981
#> 5 0.4 1.061772
#> 6 0.5 1.077801
#> 7 0.6 1.094072
#> 8 0.7 1.110588
#> 9 0.8 1.127354
#> 10 0.9 1.144372
#> 11 1.0 1.161647
#> 12 1.1 1.179182
#> 13 1.2 1.196982
#> 14 1.3 1.215050
#> 15 1.4 1.233391
#> 16 1.5 1.252008
#> 17 1.6 1.270905
#> 18 1.7 1.290088
#> 19 1.8 1.309559
#> 20 1.9 1.329325
#> 21 2.0 1.349388
#> 22 2.1 1.369753
#> 23 2.2 1.390426
#> 24 2.3 1.411409
#> 25 2.4 1.432710
#> 26 2.5 1.454331
#> 27 2.6 1.476278
#> 28 2.7 1.498555
#> 29 2.8 1.521169
#> 30 2.9 1.544123
#> 31 3.0 1.567423
#> 32 3.1 1.591073
#> 33 3.2 1.615081
#> 34 3.3 1.639449
#> 35 3.4 1.664185
#> 36 3.5 1.689294
#> 37 3.6 1.714780
#> 38 3.7 1.740651
#> 39 3.8 1.766911
#> 40 3.9 1.793566
#> 41 4.0 1.820623
#> 42 4.1 1.848088
#> 43 4.2 1.875966
#> 44 4.3 1.904263
#> 45 4.4 1.932987
#> 46 4.5 1.962143
#> 47 4.6 1.991738
#> 48 4.7 2.021778
#> 49 4.8 2.052271
#> 50 4.9 2.083222
#> 51 5.0 2.114639
#> 52 5.1 2.146530
#> 53 5.2 2.178899
#> 54 5.3 2.211757
#> 55 5.4 2.245108
#> 56 5.5 2.278961
#> 57 5.6 2.313323
#> 58 5.7 2.348203
#> 59 5.8 2.383607
#> 60 5.9 2.419543
#> 61 6.0 2.456020
#> 62 6.1 2.493045
#> 63 6.2 2.530628
#> 64 6.3 2.568775
#> 65 6.4 2.607496
#> 66 6.5 2.646799
#> 67 6.6 2.686693
#> 68 6.7 2.727186
#> 69 6.8 2.768288
#> 70 6.9 2.810008
#> 71 7.0 2.852354
#> 72 7.1 2.895337
#> 73 7.2 2.938966
#> 74 7.3 2.983251
#> 75 7.4 3.028200
#> 76 7.5 3.073825
#> 77 7.6 3.120135
#> 78 7.7 3.167140
#> 79 7.8 3.214852
#> 80 7.9 3.263279
#> 81 8.0 3.312434
#> 82 8.1 3.362327
#> 83 8.2 3.412968
#> 84 8.3 3.464370
#> 85 8.4 3.516543
#> 86 8.5 3.569499
#> 87 8.6 3.623250
#> 88 8.7 3.677807
#> 89 8.8 3.733182
#> 90 8.9 3.789388
#> 91 9.0 3.846437
#> 92 9.1 3.904342
#> 93 9.2 3.963115
#> 94 9.3 4.022768
#> 95 9.4 4.083317
#> 96 9.5 4.144772
#> 97 9.6 4.207149
#> 98 9.7 4.270460
#> 99 9.8 4.334720
#> 100 9.9 4.399943
#> 101 10.0 4.466143
run_logistic_model(time = 0:10, init = c(N1 = 1), params = c(r = .15, K = 1000, tau = 2.1))
#> time N1
#> 1 0 1.000000
#> 2 1 1.161646
#> 3 2 1.349387
#> 4 3 1.567494
#> 5 4 1.820831
#> 6 5 2.115049
#> 7 6 2.456722
#> 8 7 2.853476
#> 9 8 3.314148
#> 10 9 3.848983
#> 11 10 4.469847