Run exponential growth model
run_exponential_model.Rd
Run exponential growth model
Arguments
- time
vector of time units over which to run model, starting from 0.
time
can also be supplied as just the total length of the simulation (i.e. tmax)- init
initial population size of population, in a vector with name
N1
- params
intrinsic growth rate r, in a vector with name
r
See also
run_logistic_model()
for simulating the dynamics of a population
with logistic growth to a carrying capacity, and
run_discrete_exponential_model()
for a simulating exponential growth in
discrete time
Examples
run_exponential_model(time = 0:10, init = c(N1 = 1), params = c(r = .1))
#> time N1
#> 1 0 1.000000
#> 2 1 1.105171
#> 3 2 1.221403
#> 4 3 1.349861
#> 5 4 1.491827
#> 6 5 1.648723
#> 7 6 1.822121
#> 8 7 2.013755
#> 9 8 2.225544
#> 10 9 2.459607
#> 11 10 2.718286
run_exponential_model(time = 10, init = c(N1 = 1), params = c(r = .1))
#> time N1
#> 1 0.0 1.000000
#> 2 0.1 1.010050
#> 3 0.2 1.020202
#> 4 0.3 1.030455
#> 5 0.4 1.040811
#> 6 0.5 1.051271
#> 7 0.6 1.061837
#> 8 0.7 1.072508
#> 9 0.8 1.083287
#> 10 0.9 1.094175
#> 11 1.0 1.105171
#> 12 1.1 1.116278
#> 13 1.2 1.127497
#> 14 1.3 1.138829
#> 15 1.4 1.150274
#> 16 1.5 1.161834
#> 17 1.6 1.173511
#> 18 1.7 1.185305
#> 19 1.8 1.197218
#> 20 1.9 1.209250
#> 21 2.0 1.221403
#> 22 2.1 1.233678
#> 23 2.2 1.246077
#> 24 2.3 1.258600
#> 25 2.4 1.271249
#> 26 2.5 1.284026
#> 27 2.6 1.296930
#> 28 2.7 1.309965
#> 29 2.8 1.323130
#> 30 2.9 1.336428
#> 31 3.0 1.349859
#> 32 3.1 1.363425
#> 33 3.2 1.377128
#> 34 3.3 1.390968
#> 35 3.4 1.404948
#> 36 3.5 1.419068
#> 37 3.6 1.433330
#> 38 3.7 1.447735
#> 39 3.8 1.462285
#> 40 3.9 1.476981
#> 41 4.0 1.491825
#> 42 4.1 1.506818
#> 43 4.2 1.521962
#> 44 4.3 1.537258
#> 45 4.4 1.552708
#> 46 4.5 1.568313
#> 47 4.6 1.584074
#> 48 4.7 1.599995
#> 49 4.8 1.616075
#> 50 4.9 1.632317
#> 51 5.0 1.648722
#> 52 5.1 1.665292
#> 53 5.2 1.682028
#> 54 5.3 1.698933
#> 55 5.4 1.716007
#> 56 5.5 1.733253
#> 57 5.6 1.750673
#> 58 5.7 1.768267
#> 59 5.8 1.786039
#> 60 5.9 1.803989
#> 61 6.0 1.822119
#> 62 6.1 1.840432
#> 63 6.2 1.858928
#> 64 6.3 1.877611
#> 65 6.4 1.896481
#> 66 6.5 1.915541
#> 67 6.6 1.934793
#> 68 6.7 1.954238
#> 69 6.8 1.973878
#> 70 6.9 1.993716
#> 71 7.0 2.013753
#> 72 7.1 2.033992
#> 73 7.2 2.054434
#> 74 7.3 2.075081
#> 75 7.4 2.095936
#> 76 7.5 2.117000
#> 77 7.6 2.138277
#> 78 7.7 2.159767
#> 79 7.8 2.181473
#> 80 7.9 2.203397
#> 81 8.0 2.225541
#> 82 8.1 2.247908
#> 83 8.2 2.270500
#> 84 8.3 2.293319
#> 85 8.4 2.316367
#> 86 8.5 2.339647
#> 87 8.6 2.363161
#> 88 8.7 2.386911
#> 89 8.8 2.410900
#> 90 8.9 2.435130
#> 91 9.0 2.459604
#> 92 9.1 2.484323
#> 93 9.2 2.509291
#> 94 9.3 2.534510
#> 95 9.4 2.559982
#> 96 9.5 2.585710
#> 97 9.6 2.611697
#> 98 9.7 2.637945
#> 99 9.8 2.664457
#> 100 9.9 2.691235
#> 101 10.0 2.718282